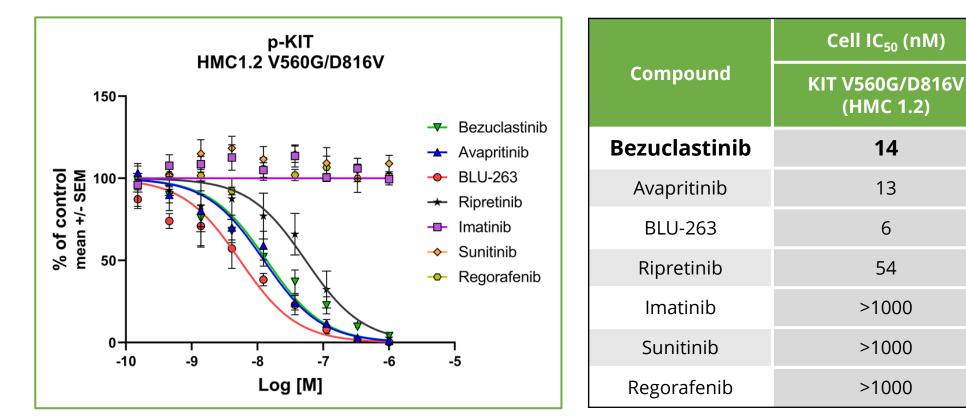


Bezuclastinib Selectivity to KIT A-Loop Mutations, Minimal Brain Penetration, and Favorable PK Properties In Preclinical Models

> American Initiative in Mast Cell Diseases (AIM) 2022 AIM Physician and Investigator Conference Salt Lake City, Utah, May 22, 2022

KIT Activation Loop Mutants are Key Targets for Systemic Mastocytosis and Refractory GIST



ABD= ATP-Binding Domain; AL= Activation Loop

- KIT mutations serve as driver mutations in up to 80% of gastrointestinal stromal tumors (GIST) and in over 90% of systemic mastocytosis (SM)^{1,2}
- In GIST, patients often relapse after front-line imatinib treatment due to secondary mutations in ATP-binding domain (ABD) or Activation Loop (AL)³
 - Second-line sunitinib is active against ABD mutations, but not AL mutations
- Inhibitors targeting AL mutations, notably D816V (a common AL mutation in SM), have shown activity in the treatment of advanced SM, but off-target toxicities of available compounds may limit optimal clinical dosing^{4, 5}
- Bezuclastinib is a novel type I TKI that was developed as a highly potent and selective inhibitor of KIT D816V

^{1.} Klug LR et al., Nature Reviews Clinical Oncology, 2022:1-14; 2. Shomali W, Gotlib J. Hematology. 2018;2018(1):127-136; 3. Napolitano A, Vincenzi B, British Journal of Cancer. 2019;120(6):577-578; 4. RyDAPT [package insert]. East Hanover, New Jersey: Novartis Pharmaceuticals; 2021; 5. AYVAKIT [package insert]. Cambridge, MA: BluePrint Medicines; 2021.

Bezuclastinib is a Potent Inhibitor of KIT D816V, an Activation Loop Mutation

HMC1.2 human mast cells (V560G/D816V) were treated with inhibitors for 1 hour followed by analysis for phosphorylated c-KIT ELISA (R&D Systems)

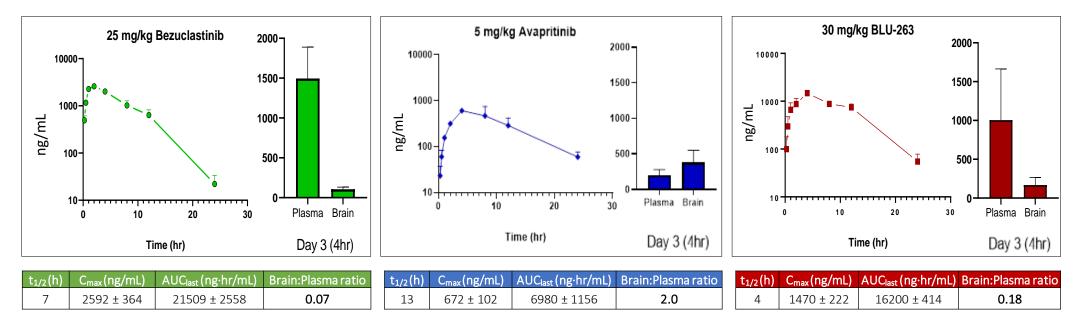
 $\rm IC_{50}$ values from ELISA in (A) in nM are represented for bezuclastinib and other KIT inhibitors

Bezuclastinib Demonstrates Superior Selectivity Against Closely Related Kinases

- Bezuclastinib demonstrates no activity on closely related kinases, unlike other KIT inhibitors
- Inhibition of these closely related kinases have been linked to off-target toxicities, such as edema and pleural effusions^{1,2}

Compound	Cell IC ₅₀ (nM)				
	PDGFRα	PDGFRß	CSF1R	FLT3	KDR
Bezuclastinib	>10,000	>10,000	>10,000	>1000	>1000
Avapritinib	53	10	249	305	>1000
BLU-263	21	6	161	345	>1000
Ripretinib	20	34	312	534	110
Imatinib	75	247	1027	>1000	>1000
Sunitinib	23	14	313	1	4
Regorafenib	138	1180	473	237	101

The table displays IC_{50} values (nM) for the closely related kinase assays. Color key displays where the fold change of these values vs. on-target KIT activity falls. On-target KIT activity was calculated with the following information for each KIT inhibitor: Bezuclastinib (KIT D816V = 14nM), Avapritinib (KIT D816V = 13nM), BLU-263 (KIT D816V = 6nM, Ripretinib (KIT D816V = 54nM), Imatinib (KIT V560G, HMC.1.1 cells = 10.7nM³), Sunitinib (KIT Δ JMD/T670I GIST T1 5R cells = 8.8nM), and Regorafenib (KIT K642E = 20nM⁴)

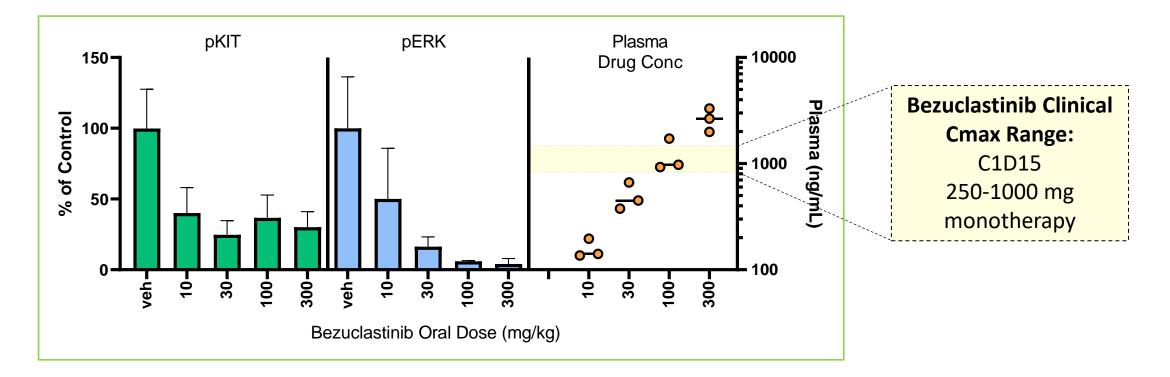

Key: Fold change from on-target KIT activity

≤ 10x 10x-30x 30x-50x 50x-100x > 100x

Color key displays where the fold change of these values vs. on-target KIT activity falls. On-target KIT activity was based on potency presented in prior slide.

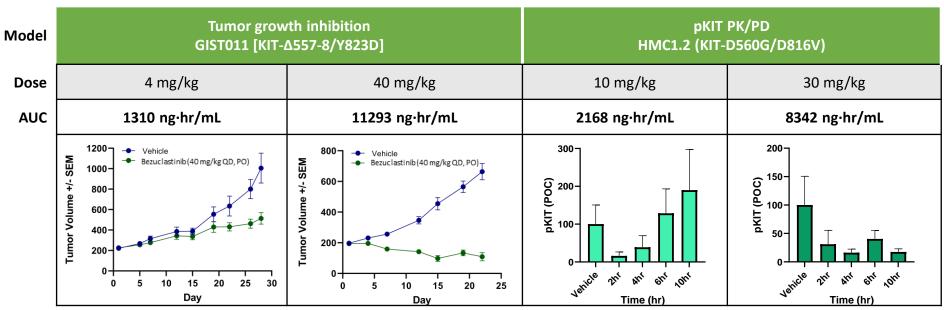
^{1.} Giles FJ et al, Leukemia. 2009;23(10):1698-1707; 2. Liu S, Kurzrock R. Seminars in Oncology. 2015;42(6):863-875 3. Smith BD et al., Cancer Cell. 2019;35(5):738-751; 4. Wilhelm S et al, Molecular Cancer Therapeutics. 2007;6(11 Supplement): B260-B260;

Bezuclastinib Demonstrates Minimal Brain Penetration



- Bezuclastinib shows minimal brain penetration with brain to plasma ratio of 0.07 compared to 2.0 for avapritinib
- The absence of brain penetration is a preferred feature for a KIT A-Loop inhibitor given the CNS-related adverse events that have been observed in this targeted class^{1,2}
- In a separate neurobehavioral (CNS) safety pharmacology study, rats were treated with oral doses of 0, 5, 25, or 100 mg/kg of bezuclastinib. No effect on behavioral endpoints were observed in this study, or in repeat dose toxicology studies (Data on File)

To assess brain distribution, male Sprague Dawley rats were administered 25 mg/kg bezuclastinib SDD, 5 mg/kg avapritinib, or 30 mg/kg BLU-263 by oral gavage. Dose levels were selected to correlate with clinical exposures reported in human clinical studies. Plasma samples were collected after a single dose and assessed for drug concentration by LC-MS/MS. Animals were dose administered for 2 additional days and plasma/brain harvested 4 hr post final dose. This repeat-dose administration – rather than single dose- allowed for a proper survey of steady state brain levels.


1. RyDAPT [package insert]. East Hanover, New Jersey: Novartis Pharmaceuticals; 2021; 2. AYVAKIT [package insert]. Cambridge, MA: BluePrint Medicines; 2021

Bezuclastinib Inhibits KIT D816V and Downstream Signaling in vivo at Concentrations Below Previously Observed Clinical Exposures

HMC1.2 tumor-bearing nu/nu NCr female mice were treated with a single oral dose of bezuclastinib formulated as a spray-dry dispersion (Inotiv, Boulder, CO). Tumor and plasma were collected 4 hr post dose administration then assessed for drug concentration in plasma by LC/MS-MS, pKIT in tumor by ELISA (R&D Systems), and pERK normalized to GAPDH by immunoblot analysis. Phospho-protein data are expressed as a percent of vehicle control and represent n=3-6 individual samples.

Clinically Achievable Exposures Represented in Nonclinical Models Demonstrate Significant Biological Activity

GISTO11 tumor-bearing NOD SCID female mice were randomized at a starting tumor volume of ~200mm³ and treated with a single daily oral dose of Bezuclastinib (Crown Bio, San Diego, CA). Tumor volumes were determined three times weekly using the formula $V=L^*(W)^2/2$.

HMC1.2 tumor-bearing nu/nu NCr female mice were treated with a single oral dose of Bezuclastinib formulated as a spray-dry dispersion (Inotiv, Boulder, CO). Tumor and plasma were collected at predetermined time points and assessed as described above (Figure 4).

Clinical AUC (ng·hr/mL) = **18,500 ng·hr/mL**¹ (C1D15: 250 mg QD monotherapy)

1. Gebreyohannes YK et al., Clinical and Experimental Medicine. 2019;19(2):201-210

<u>Summary</u>

- Bezuclastinib:
 - A potent and selective inhibitor of KIT A-Loop mutations, with no activity demonstrated against closely related kinases
 - Shows minimal brain exposure and no evidence of CNS-related activity in nonclinical safety pharmacology studies
 - Exhibits time- and dose-dependent inhibition of pKIT and downstream signaling at plasma concentrations relevant to the exposures expected in ongoing clinical trials of bezuclastinib, supporting the potential for therapeutic activity in these patients
 - Currently under clinical investigation for Advanced SM (APEX, NCT04996875), NonAdvanced SM (SUMMIT, NCT05186753), and GIST (PEAK, NCT05208047)
 - Initial clinical data from a subset of patients from the APEX trial will be shared at the European Hematology Association meeting at the afternoon poster session on June 10, 2022 (Abstract P1049)

